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Abstract
Digital steganography, the modern version of the ancient art of data hiding is a prevalent
tool for covert communication. Steganalysis, at least as old as steganography comes handy to
unearth such hidden channels. The illegal act of information hiding through steganography of
digital images can be overcome effectively only by using intelligent steganalytic techniques.
In this paper, a novel MixNet framework comprising of six Convolutional Neural Networks
(CNNs) is proposed as feature extractors for accomplishing generic steganalysis of spatial
content-adaptive algorithmswith better detection accuracy. Since the spatial content-adaptive
algorithms embed secret bits in the hard to model components of the image like edges or
textures, inputs to theCNNs are initially filtered using high pass filters to obtain the embedded
content in the form of noise residual. Hierarchical features extracted from these networks are
then concatenated and used to train Support Vector Machine classifier. Experimentation is
performed using the benchmark BOSSbase v1.01 cover images and stego images are created
with three state-of-the-art algorithms HUGO-BD, S-UNIWARD and WOW at five relative
payloads 0.1–0.5 bits per pixel (bpp). The experimental results show that the proposedMixNet
outperforms the compared related works in literature and proves the robustness of MixNet
in detecting content-adaptive steganography.

Keywords Content-adaptive steganography · Convolutional neural network · Noise
residual · Support vector machine classifier

1 Introduction

Digital steganography, the modern version of the ancient art of data hiding is a prevalent
tool for covert communication. Steganography hides a secret message that can be of any
multimedia type such as text, image or audiowithin an innocuousmultimedia data (i.e., cover)
in such away that changes are undetectable. The counterpart of steganography is steganalysis.
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The other forms of information hiding are cryptography and watermarking. Cryptography
involves coding themessage using an encryption key and sending it as ciphertext in scrambled
form [1]. Watermarking hides a secret pattern or image inside a host (cover) image to convey
a copyrighted content or ownership. Prevalent choice of cover medium is a digital image due
to its ability to conceal a payload with invisible effects [2].

Fundamentally, image steganography can be attacked by a steganalyst in twoways namely,
passive or active. In passive or generic steganalysis, the aim is to identify whether an image
carries a payload or not, whereas in active steganalysis the specific algorithm which was
used to embed the payload has to be identified. Generic steganalysis itself defeats the main
goal of steganography (concealing secret) by identifying the suspicious stego image [3].
This will aid active steganalysis which needs to go a long way for extraction of secret.
Steganographic algorithms that select image contents like edges of image for hiding payload
in raw pixels are referred to spatial content-adaptive steganographic algorithms [4]. Since
these algorithms leave minimal traces of hidden information, it is necessary to extract image-
content independent features in order for the steganalyst to achieve generic steganalysis. This
paper presents a robust generic steganalysis framework by framing modern convolutional
neural networks to extract highly sophisticated content independent features and classification
of those features by using support vectormachine classifier to discriminate stego images from
innocent cover images.

The rest of the paper is organized as follows: Sect. 2 presents a brief review of literature,
Sect. 3 elaborates the proposed methodology, Sect. 4 provides the experiment settings along
with dataset used for experiments, Sect. 5 enumerates the experimental results and discussion
and finally Sect. 6 concludes the presented work.

2 Review of Literature

Over the past two decades, many approaches of steganalysis have been proposed [5–7]).
Traditionally, steganalysis is endeavored using two stages. The first stage is extraction of
handcrafted features which must be able to model the embedding distortions in the image
caused by any steganographic algorithm. The second stage is classification using binary
Support Vector Machine (SVM) or ensemble of classifiers to identify cover and stego images
carrying hidden secret. Many researchers have developed high dimensional feature sets and
powerful classifiers to detect steganography.

In [8], authors developed a universal steganalyzer called Spatial Rich Model (SRM) com-
posed of multiple rich image residual sub-models. The sub-models take into consideration
various types of neighboring samples relationships of noise residuals obtained by linear and
non-linear filters. Their framework significantly improved detection rates for two adaptive
methods Highly Undetectable stegGO [9] (HUGO) and Edge Adaptive (EA) algorithm and
one non-adaptive ± embedding algorithm. [10] developed a low dimensional generic ste-
ganalyzer based on spatial and transform domain features to detect stego images with low
volume payloads.

The authors in [11] stated the limitation in existing adaptive steganography i.e., it is
possible for steganalyzers to estimate the embedded regions from an image. By making
use of embedding probabilities of pixels, they proposed an adaptive steganalytic scheme
by designing a feature extraction process that would assign higher weights to pixels
with high embedding probabilities and vice versa. The experiments were carried out on
Wavelet Obtained Weights [12] (WOW), Highly Undetectable steGO Gibbs construction
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with Bounding Distortion [13] (HUGO-BD), Spatial Version of the UNIversal Wavelet Rel-
ative Distortion [14] (S-UNIWARD), and EA algorithms. They achieved remarkable results
compared to original Spatial RichModel (SRM). Yu et al. [15] proposed a spatial steganalytic
schemewhich is based on redistributed residuals and developed a diverse ensemble classifier.

A non-linear feature map based steganalysis method for spatial content-adaptive stegano-
graphic algorithms for grayscale and color images is proposed in [16]. In this approach
the authors proposed a non-linear feature transformation on maxSRMd2 features [17] for
grayscale images and Spatio-Color Rich Model (SCRM) features for color images using
Nyström approximation on various types of kernels. They used a simple linear classifier to
mark non-linear boundary between cover and stego classes. Their method not only achieved
improvement in detection accuracy of binary classifiers but also worked well as quantitative
detectors.

An improved version of texture feature i.e., Local Binary Pattern (LBP) called as threshold
LBP (TLBP) is proposed in [18]. In this work, a set of high-order derivative filters is used to
obtain residual images and then the TLBP operation is performed on them. From the TLBP
images, secondorder co-occurrencematrix features are formedby feature aggregationprocess
similar to the co-occurrence symmetrization in SRM.Thismethod prevailed successfully over
SRM features for state-of-the-art content-adaptive steganographic algorithms.

The difficulty of steganalysis in images due to edges and texture information is addressed
in [19]. The authors proposed to pre-classify the cover source using k-means algorithm for
improving the performance of multiple existing features. Feature separability analysis of
SRM and TLBP features using Fisher score of these features is performed in [20] to improve
the detection accuracy of both spatial and transform domain content-adaptive steganography.

In these traditional techniques, feature extraction process is carried out with human
supervision and in order for obtaining good accuracy in classification, the steganalyst must
have very good domain knowledge about steganography and steganalysis. This is a time-
consuming process, that is to learn the fundamentals of steganographic algorithm available
and identifying the pattern in which the payload is embedded and so on.

Inspired by the success of deep learning architectures for visual recognition tasks, Con-
volutional Neural Networks (CNNs) have embarked a strong footmark into steganalysis
domain also. The first CNN architecture for steganalysis was developed by Tan and Li [21].
The authors implemented a Stacked Convolutional Auto-Encoder to capture statistical reg-
ularities in each layer to model cover and stego images. After their approach, notable CNN
based steganalyzers were proposed by authors in [22–26]. With the introduction of deep
residual networks [27], the authors established a deeper convolution layer architecture for
steganalysis. In this work, reduction in detection accuracy is achieved with multiple layers of
residual blocks that help to learn discriminating features.Wu et al. introduced adaptive image
content suppression CNN in [28]. This network preserved the subtle stego noise through-
out the network and achieved better detection accuracy compared to existing CNN models.
End-to-end learnable CNNmodels are proposed byWang et al. in [29] and Boroumand et al.
in [30]. The Steganalysis Residual Network (SRNet) proposed in [30] is a deep architecture
with more than eighty layers of convolution to capture the imperceptible difference between
cover and stego images. In [31], Zhang et al. introduced a multi-scale CNN model with
residual blocks for spatial steganalysis.

A targeted steganalysis approach to detect S-UNIWARD algorithm is proposed by Kim
et al. [32] using a dual channel CNN and dual network CNN based steganalysis. In this
approach additional data is first embedded to any given image using S-UNIWARD algorithm
and the original along with the difference between original and embedded images are fed as
input to CNN. Ren et al. [33] proposed a Learned Selection-Channel-Aware (LSCA) deep
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learning steganalytic architecture which learns from the embedding probability map of input
image along with original image. The base architecture is taken from XuNet and YeNet [34].
A ChAnneLPruning-Assisted (CALPA) deep residual network architecture search approach
is proposed by Tan et al. [35] as an effort to shrink the existing vast CNN architectures by.
They have used the existing SRNet [30] and XuNet [23] models to form a baseline network
and adopted a channel pruning methodology from ThiNet [36] for every convolution layer
to reduce the number of channels.

Zhang et al. [37] proposed an enhanced architecture for steganalysis by replacing normal
convolution layers by depth-wise separable convolution blocks and spatial pyramid pooling
in the place of normal pooling. Liu et al. [38] proposed a newCNNwith diverse filter modules
(DFMs) and squeeze-and-excitation modules (SEMs) to learn the embedding artefacts made
by WOW and S-UNIWARD algorithms. In this architecture, input is preprocessed with 30
HPFs from SRM, and then passed on to three layers of DFMs and SEMs and finally classified
using a fully-connected layer with softmax activation.

Though there are tremendousCNNbased steganalyzers [39, 40], usage ofCNNas a feature
extractor is hardly introduced. The detection error rates are still low for low volume payloads
and also existing architectures have increased complexity in terms of number of layers.
Such downsides of modern deep learning based architectures and traditional steganalytic
techniques that are mentioned earlier are addressed in this paper. The major contributions of
the research work presented in this paper are highlighted as follows:

• A novel MixNet steganalytic framework comprised of six convolutional neural networks
as feature extractors to extract unique and discriminating features to differentiate cover
images and stego images created by content-adaptive steganography.

• Usage of diverse filters in the pre-processing layer of the CNNs to bring out the subtle
stego noise content residing in the image contents in the form of noise residues.

• Concatenation of features extracted from noise residues using the proposedmultiple CNNs
proves to be a robust feature set for steganalysis.

• The novel MixNet proposed in this paper achieves passive steganalysis of cover and stego
images with various payloads with high accuracy.

3 ProposedMixNet Steganalysis Framework

The proposed MixNet Steganalysis framework is instigated in two stages. In Stage 1, six
CNN architectures are trained to discriminate between cover and stego images. In Stage 2,
the trained CNN architectures are used as feature extractors to extract content-independent
features and these features are fed to Support Vector Machine Classifier to achieve generic
steganalysis with reduced error rate.

3.1 Stage 1: Convolutional Neural Network Architectures

In this research work, CNN is proposed specially for detecting content-adaptive stegano-
graphic algorithms to improve statistical modelling. It has three advantages. Firstly, CNN
can learn features automatically based on the pixel distribution. Secondly, the convolution
operation in CNN captures dependencies among pixels, which is a key factor for steganalysis.
Thirdly, the parameter sharing mode in CNN significantly reduces the number of trainable
parameters and enables CNN to deal with large sized images. In this work, two CNN archi-
tectures inspired from XuNet [23] and QianNet [24] are considered as base CNNs and some
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modification to those architectures are carried out in order to get improved architectures for
detecting content-adaptive steganographic algorithms. Figure 1 shows the two base CNN
architectures used in this work which are to be used as feature extractors for Stage 2 and
three different types of preprocessing filters.

In the convolution module of the base architecture 2 shown in Fig. 1b, a new non linear
activation function referred as Gaussian activation [24] is used in the first two convolution
modules. The gaussian activation function of input x is expressed in Eq. (1), where σ is the
spread of the gaussian curve.

f (x) � 1 − exp

(
− x2

σ 2

)
(1)

For the first two convolution layers BN is disabled and for next three convolution layers BN
is used followed by ReLU activation. This is done to study the Gaussian activation function.
After the global averaging layer, compared to architecture 1, one additional FC layer with
64 neurons is added. Finally, there is a FC layer with 2 neurons and Softmax activation for
classification. Tables 1, 2 give the details of the proposed base CNN architecture 1 and 2,
respectively. As given in Fig. 1c, the first preprocessing filter type is a high pass filter (KV).
Since the content-adaptive steganographic algorithms embed secret bits in the high frequency
components of the image i.e., edges and textures, filtering using a high pass filter will help to
obtain the embedded content in the form of noise residual. The second type of preprocessing
filters are two pairs of high pass filters and Gabor filters. Gabor filters are special classes of
band pass filters that are well established for texture analysis. The third type of preprocessing
filter is a group of twenty four linear Spatial Rich Model (SRM) filters (high pass filters)
that are designed to capture diverse dependencies among neighboring pixels. Note that, the
images are filtered by these filters in the preprocessing layer before passing through the
convolution layers. As identified in [31], adding a preprocessing stage with many kinds of
high-pass filters tend to yield better accuracy rather using images directly or with single
filter. With this motivation, the three types of preprocessing filters are used for the base CNN
architectures to form six different CNN types. The formation of CNN are as follows:

• CNN Type I—Base CNN Architecture 1 with Type 1 preprocessing filters
• CNN Type II—Base CNN Architecture 1 with Type 2 preprocessing filters
• CNN Type III—Base CNN Architecture 1 with Type 3 preprocessing filters
• CNN Type IV—Base CNN Architecture 2 with Type 1 preprocessing filters
• CNN Type V—Base CNN Architecture 2 with Type 2 preprocessing filters
• CNN Type VI—Base CNN Architecture 2 with Type 3 preprocessing filters

The idea behind framing these six architectures is to utilize the different types of prepro-
cessing filters to filter the images and combining the features learned from all these vibrant
mix of convolution layers of six CNN types for the ultimate goal of achieving generic ste-
ganalysis with high detection accuracy. Since each convolution layer in these six types of
CNN models, processes the input image data with a rich set of filters that are learned dur-
ing training procedure, it adds an additional level of image content suppression and on the
whole, image content independent features are extracted with the help of concatenating all
the features from the MixNet.

These six architectures are individually trained to achieve generic steganalysis. Momen-
tum based Stochastic Gradient Descent backpropagation algorithm is used for training the
convolutional neural networks. Categorical cross-entropy loss or logarithmic loss is used for
computing the difference in predicted probability and the actual class value (0—cover or
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(a) Base CNN Architecture 1 (b) Base CNN Architecture 2

Type 1: Type 2:

Type 3: 

(c) Preprocessing filters
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Convolution
8 filters, size 5×5

Abs→BN→TanH

Average Pool
size 5×5

Input 
image

stego

Convolution
16 filters, size 5×5

BN→TanH

Average Pool
size 5×5

Convolution
32 filters, size 1×1

BN→ ReLU

Average Pool
size 5×5

Convolution
64 filters, size 1×1

BN→ ReLU

Average Pool
size 5×5

Convolution
128 filters, size 1×1

BN→ ReLU

Global Average Pool

cover

FC (2)

Softmax

flatten

Preprocessing Layer

Convolution
16 filters, size 5×5

Gaussian activation

Average Pool
size 3×3

Input 
image

Convolution
16 filters, size 3×3

Gaussian activation

Average Pool
size 3×3

Convolution
16 filters, size 3×3

BN→ ReLU

Average Pool
size 3×3

Convolution
16 filters, size 1×1

BN→ ReLU

Average Pool
size 3×3

Convolution
16 filters, size 3×3

BN→ ReLU

Global Average Pool

stego cover

FC (2)

Softmax

FC (64)

flatten

Fig. 1 Schematic diagram of the proposed convolutional neural network architectures and preprocessing filters
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1—stego). Since this loss function penalizes the score based on the distance between pre-
dicted probability’s distance from the actual class value, a small score of 0.1 or 0.2 refers
to small differences and a high score of 0.9 or 1.0 refers to large difference. When this loss
is minimized while training and testing, a better model is finally obtained and this helps to
predict the cover and stego images with high degree of confidence. The pseudo algorithm
for training and testing the six CNN types to perform steganalysis task is given in below
Algorithms 1 and 2.
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Fig. 2 Schematic of the proposed MixNet for generic steganalysis of content-adaptive steganography

3.2 Stage 2: MixNet Formation

Figure 2 shows the schematic of the proposedMixNet for generic steganalysis. After training
the six CNN types, the trained networks are saved. Using the saved networks, features are
extracted from the activations of global average pooling layer and are concatenated to form
the final feature.

For the CNN Type I, II and III the dimension of the global average pool feature is 128
and for the rest of the models the dimension is 64. Overall, the feature dimension is 576 as
mentioned in Fig. 2. Since there is amixture of features taken from six CNN architectures, the
network is named as ‘MixNet’. The features are then classified by a Support Vector Machine
classifier to provide the final classification result. The MixNet emphasizes the use of CNNs
as a powerful feature extractor to learn and extract discriminating features from the noise
residuals of stego and cover images.

4 Experiment Settings

The experiment settings to evaluate the performance of the proposed MixNet steganalysis
framework is briefly presented. The database for cover images is selected from BOSSbase
v1.011 [41] which consists of 10,000 raw, uncompressed grayscale images of resolution 512
× 512 pixels. Using Matlab ‘imwrite’ command, these raw images are converted to bitmap
(BMP) format. The content-adaptive stego database is created by generating stego images by
HUGO-BD, S-UNIWARD and WOW algorithms. The Matlab code for these algorithms is
download fromBinghamtonUniversity.2 The payloads are random binary bits generatedwith
five different relative payloads viz 0.1 bpp, 0.2 bpp, 0.3 bpp, 0.4 bpp and 0.5 bpp. Therefore,

1 https://dde.binghamton.edu/download/.
2 http://dde.binghamton.edu/download/stego_algorithms/.
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Fig. 3 Visualization of embedding pattern of HUGO-BD algorithm at 0.4 bpp. a Cover image. b Stego image.
c difference image

for every relative payload bin, 10,000 stego images are created from the cover database using
one algorithm resulting in a total 1,50,000 images in the stego database. A sample cover
image, stego image (created by HUGO-BD at 0.4 bpp payload) and their difference image
is shown in Fig. 3.

From Fig. 3 it can be clearly seen that, visually the stego image and cover image are
looking alike but there are differences in the pixel values of stego image along the edges and
some texture regions. This embedding pattern of HUGO-BD algorithm changes for every
image based on its image contents. Similar pattern is observed for S-UNIWARD and WOW
algorithms also. This highlights the difficulty in developing a discriminating feature from a
group of cover and stego images. Hence in this work, CNNs are utilized to learn and then
extract needful discriminating features.

Training the proposed six CNN models is done by using Stochastic Minibatch Gradient
Descent backpropagation algorithm. The minibatch size is set as 64 with 32 cover images
and their corresponding 32 stego images. The number of epochs used for training is 20 and a
learning rate of 0.001 is fixed for all the epochs. The weights and bias in convolution and FC
kernels are initialized to random zero-mean Gaussian distribution with standard deviation of
0.01 or leaky He initialization and later on updated while network training. In training phase,
for every payload bin, six CNN models are trained using 8000 cover and 8000 stego images
and testedwith the remaining 2000 cover and 2000 stego images. The average elapsed time for
training the CNN types is 50 min. The same set of training and testing images are then fed as
input separately to the proposed MixNet to extract features and finally the extracted features
of training images are used to train the SVM classifier. The performance of the proposed
MixNet is then validated by detecting the features of testing images using the trained SVM
classifier in testing phase.

5 Experimental Results and Discussion

The experiments to evaluate the proposed MixNet steganalysis framework are presented
illustratively. First set of experiments are done to train the six CNNTypes (1 to 6) so that those
models learn to extract discriminating features of embedding distortions made by content-
adaptive steganographic algorithms. TheCNNmodels are executed in aworkstation equipped
with NVIDIA 32 GB GV 100 GPU card. The performance metrics used for evaluation is
accuracy ((TP + TN)/(TP + FP + FN + TN)) and error rate (1 – accuracy) computed from
confusion matrix (obtained from predicted and actual labels) where TP is True Positive, TN
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is True Negative, FP is False Positive and FN is False Negative. For steganalysis, stego class
is positive and cover class is negative.

5.1 Evaluation of ProposedMixNet to Perform Generic Steganalysis

Table 3 presents the detection test accuracy (%) comparison of using the six types of CNN
architectures individually and then as feature extractors inMixNet to detect the three content-
adaptive steganographic algorithms.

Comparing the six CNN Types’ results presented in Table 3, the CNN Type III achieves
better accuracy in all the payload bins when compared to the other five types. HUGO-BD
algorithm is detected best with accuracy of 81.625% and 59.55% in payload bins 0.5 bpp
and 0.1 bpp respectively by CNN Type III. Similar kind of improvement is achieved for
S-UNIWARD and WOW algorithms also.

SVM training in MixNet is carried out with tenfold cross validation and the average
performance metrics is reported. The goal of performing cross-validation is to statistically
train the classifier for generalization and prevent overfitting. The test accuracies tabulated in
Table 3 also clearly shows the superior performance of the proposedMixNet when compared
to the individual proposed CNN Types. In detecting HUGO-BD algorithm for 0.1 bpp, 0.2
bpp, 0.3 bpp, 0.4 bpp and 0.5 bpp payload bins, there is an increase in accuracy of 11.6%,
11.8%, 11.3%, 13.8% and 14.7% respectively achieved by MixNet when compared to the
average accuracies of CNNTypes. Similarly for S-UNIWARDdetection, increase percentage
observed are 12.7%, 12.7%, 14.6%, 12.8% and 14.7% and for WOW detection the increase
percentage observed are 11.4%, 11.4%, 11.0%, 13.5% and 14.1% in the payload bins 0.1
bpp, 0.2 bpp, 0.3 bpp, 0.4 bpp and 0.5 bpp. Since in the proposed MixNet, features extracted

Table 3 Test accuracy (%) for detection of content-adaptive Steganographic algorithms by the proposed CNN
types and MixNet

Algorithm Payload
(bpp)

Type I Type II Type
III

Type
IV

Type V Type
VI

Mix-Net

HUGO-BD 0.1 54.28 54.15 59.55 50.03 53.45 50.48 65.25

0.2 64.43 63.73 66.40 53.68 63.20 60.83 73.85

0.3 70.75 70.28 72.63 68.28 67.65 68.10 80.95

0.4 75.65 71.58 76.90 74.03 70.78 73.53 87.55

0.5 79.08 79.83 81.63 74.25 76.18 77.20 92.73

S-UNIWARD 0.1 50.00 50.63 56.03 50.00 50.03 50.58 63.95

0.2 61.60 60.75 64.43 52.78 54.55 55.45 71.00

0.3 68.48 67.18 70.98 56.33 66.43 65.13 80.38

0.4 74.98 74.68 76.25 71.33 71.95 72.13 86.33

0.5 79.58 79.20 80.75 77.18 77.58 79.50 93.65

WOW 0.1 50.08 53.80 57.10 50.03 50.78 50.40 63.45

0.2 61.28 61.33 65.38 51.43 59.35 56.13 70.55

0.3 66.73 68.25 70.35 64.48 65.05 64.80 77.58

0.4 73.30 73.18 75.75 67.03 70.68 70.10 85.20

0.5 78.55 77.43 79.20 76.83 76.88 75.13 91.48

123
Content courtesy of Springer Nature, terms of use apply. Rights reserved.



MixNet: A Robust Mixture of Convolutional Neural Networks as... 865

Fig. 4 Detection error rate comparison of all the proposed CNN types and MixNet to detect content-adaptive
algorithms. a HUGO-BD. b S-UNIWARD. c WOW

by all the six CNNmodels are used to train the SVM classifier, there is a substantial increase
in the detection accuracy. Figure 4 presents the detection error rate comparison graphs for
the proposed methods.

From Fig. 4, it is evident that the content-adaptive steganographic algorithms are detected
with minimal error rate using the proposed MixNet model which uses all the six CNNs to
extract unique features for steganalysis from residues instead of images. Figure 5 presents
the distribution of correctly identified cover and stego images while testing the MixNet
framework across various payloads.

It is clearly observed from Fig. 5 that, on an average the number of correctly identified
stego images is higher by almost 4.1%, 7.2%, 9.5%, 4.6% and 6.4% for the payload bins 0.1
bpp, 0.2 bpp, 0.3 bpp, 0.4 bpp and 0.5 bpp respectively.

In the proposed work, more importance is given to the feature extraction part, because,
if data can be modelled in such a way that the extracted features are easily discriminable
and less correlated, then any linear classifier will be able to classify the features. This will
reduce the burden on the classifiers. In order to select an apt classifier for classifying the
features extracted by the proposed MixNet, random forest, Adaboost and SVM classifiers
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Fig. 6 Comparison of using different classifiers in Stage 2 of MixNet framework

are experimented. Comparison of accuracy obtained by employing random forest, Adaboost
and SVM classifiers is provided in Fig. 6.

Thus from Fig. 6, it is evident that the SVM classifier outperforms the Random forest and
Adaboost classifiers. For example, in the low volume 0.1 bpp payload bin, the SVM classifier
is able to achieve 65.25%, 63.95%and 63.45% for the detection ofHUGO-BD, S-UNIWARD
and WOW algorithms respectively whereas the random forest and Adaboost classifiers have
obtained only 58.33%, 54.7%, 55.8% and 55.25%, 53.95% and 53.45% only. Therefore, the
proposed low dimensional MixNet features along with SVM classifier can detect even low
volume payloads with better accuracy. In the other slightly increased payloads also the SVM
classifier gives better accuracy. Hence, the SVM classifier is incorporated in the proposed
MixNet framework for accomplishing passive steganalysis.

5.2 Comparison of ProposedMixNet with State-of-the Art Feature Extractors

The performance of the proposed MixNet steganalysis framework results is compared with
well-known feature extractors SRM [8] and maxSRMd2 [17] and a deep learning based
steganalytic model Yu net [42] existing in the literature. In order to ensure a fair compar-
ison, traditional and modern steganalyzers are both taken into account. Table 4 presents
the detection error rates for passive steganalysis achieved by the proposed MixNet and the
state-of-the-art steganalyzers.

FromTable 4 it is inferred that, the detection error rate of the proposedMixNet steganalysis
framework is low against HUGO-BD, S-UNIWARD and WOW algorithms when compared
to both traditional feature extractors and deep learning model regardless of payload. Due to
the robust mixture of features extracted by CNNs employed in the proposed MixNet, the
proposed method outperforms the existing techniques.

The feature set dimension of SRM is 34,671 and maxSRMd2 is 12,753. The content-
adaptive steganographic algorithms embed bits of secret payloads in hard-to-model regions
of image like edges and textures in order to make unnoticeable changes to cover image while
creating stego image. The proposed MixNet CNN models derive steganalytic features by
capturing such delicate embedding distortions which are the underlying difference between
any innocent cover image and illicit stego image. This is initially performed through the
three different types of pre-processing filters that are employed to extract the residuals of
images by suppressing the image content information. These residual images are then passed
through sequential convolution layers that further capture the feeble differences between the
cover and stego images. Compared to SRM and maxSRMd2, the proposed MixNet has a
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Table 4 Detection error rate comparison with existing Steganalytic techniques

Algorithm Method 0.1 bpp 0.2 bpp 0.3 bpp 0.4 bpp 0.5 bpp

HUGO-BD SRM 0.364 0.2658 0.1955 0.1355 0.0854

maxSRMd2 0.447 0.38 0.325 0.264 0.217

Yu net 0.3711 0.2816 0.2194 0.1517 - NA-

MixNet 0.3475 0.2615 0.1905 0.1245 0.07275

S-UNIWARD SRM 0.4025 0.321 0.2495 0.2055 0.1664

maxSRMd2 0.45 0.399 0.3195 0.26 0.204

Yu net 0.4511 0.3319 0.2511 0.1845 - NA-

MixNet 0.3605 0.29 0.19625 0.13675 0.0635

WOW SRM 0.3977 0.3175 0.2492 0.2067 0.1623

maxSRMd2 0.47 0.409 0.354 0.297 0.255

Yu net 0.4577 0.2917 0.216 0.1847 - NA-

MixNet 0.3655 0.2945 0.22425 0.148 0.08525

reduced feature dimension of 576-D. this reduction in feature dimension is achieved by the
CNN type I to VI that has reduced layers when compared with existing CNN architectures
in literature. Table 5 provides a comparison of space complexity (i.e., number of layers) of
the proposed CNNmodel with state-of-the-art CNN steganalyzers. For better understanding,
detection accuracy percentage for the detection of S-UNIWARD algorithm is also provided.

From Table 5 it is inferred that, compared to the Yu Net, Zhang Net and SRNet, the
number of layers in CNN architecture of the proposed method is less. It is also inferred that
with reduction in space complexity, the detection accuracy for the proposed MixNet is better
than Yu Net and Zhang Net which has more number of layers. In the case of SRNet, the
accuracy increase is approximately three percentage but it takes a vast increase in the number
of layers to achieve this. But the proposedmethod could achieve a comparable performance to
SRNet evenwith reduced layers. Thus, the proposedMixNet framework demonstrates a space
efficient steganalyzer to achieve better detection of spatial content-adaptive steganographic
algorithms.

Table 5 Comparison of number of layers present in the proposed CNN model and state-of-the-art CNN ste-
ganalyzers

Model Number of layers Accuracy (%) for the detection
of S-UNIWARD 0.4 bpp

Yu net [42] 38 81.55

Zhang net [37] 62 74.61

SRNet [30] 100 89.77

MixNet 17 86.325
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6 Conclusion

In this paper, a new steganalysis framework named MixNet with robust features that are
extracted using six convolutional neural network architectures is demonstrated to be a credible
tool for steganalysis of spatial content-adaptive algorithms. The developed MixNet achieves
92.73%, 93.65% and 91.48% accuracy in detecting HUGO-BD, S-UNIWARD and WOW
respectively in 0.5 bpp payload bin. On the whole, the proposed MixNet with less feature
dimension and reduced space complex CNN structure is significantly better in detecting
content-adaptive algorithms.

Since the proposed MixNet framework is designed with convolutional neural networks,
the input image size is fixed to 512 × 512. So, the framework will not accept images other
than this prescribed size and in such case, images must be resized. This resizing may lead to
loss of information. In future work, the MixNet will be adapted to accept images of arbitrary
sizes in order to detect any test image of arbitrary size. Also, the proposed MixNet will be
extended to detect transform domain content-adaptive algorithms.
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